Jump to content

Length contraction

From Wikipedia, the free encyclopedia
Wheels which travel at 9/10 the speed of light. The speed of the top of a wheel is 0.994 c while the speed of the bottom is always zero. This is why the top is contracted relative to the bottom. This animation is made with the assumption that the spokes of a wheel are much more elastic than its circumference. Otherwise there could be a rupture of the spokes or of the circumference. In the rest frame of the center of a wheel, wheels are circular and their spokes are straight and equidistant, but their circumference is contracted and exerts a pressure on the spokes.

Length contraction is the phenomenon that a moving object's length is measured to be shorter than its proper length, which is the length as measured in the object's own rest frame.[1] It is also known as Lorentz contraction or Lorentz–FitzGerald contraction (after Hendrik Lorentz and George Francis FitzGerald) and is usually only noticeable at a substantial fraction of the speed of light. Length contraction is only in the direction in which the body is travelling. For standard objects, this effect is negligible at everyday speeds, and can be ignored for all regular purposes, only becoming significant as the object approaches the speed of light relative to the observer.

History

[edit]

Length contraction was postulated by George FitzGerald (1889) and Hendrik Antoon Lorentz (1892) to explain the negative outcome of the Michelson–Morley experiment and to rescue the hypothesis of the stationary aether (Lorentz–FitzGerald contraction hypothesis).[2][3] Although both FitzGerald and Lorentz alluded to the fact that electrostatic fields in motion were deformed ("Heaviside-Ellipsoid" after Oliver Heaviside, who derived this deformation from electromagnetic theory in 1888), it was considered an ad hoc hypothesis, because at this time there was no sufficient reason to assume that intermolecular forces behave the same way as electromagnetic ones. In 1897 Joseph Larmor developed a model in which all forces are considered to be of electromagnetic origin, and length contraction appeared to be a direct consequence of this model. Yet it was shown by Henri Poincaré (1905) that electromagnetic forces alone cannot explain the electron's stability. So he had to introduce another ad hoc hypothesis: non-electric binding forces (Poincaré stresses) that ensure the electron's stability, give a dynamical explanation for length contraction, and thus hide the motion of the stationary aether.[4]

Albert Einstein (1905) is credited[4] with removing the ad hoc character from the contraction hypothesis, by deriving this contraction from his postulates instead of experimental data.[5] Hermann Minkowski gave the geometrical interpretation of all relativistic effects by introducing his concept of four-dimensional spacetime.[6]

Basis in relativity

[edit]
In special relativity, the observer measures events against an infinite latticework of synchronized clocks.

First it is necessary to carefully consider the methods for measuring the lengths of resting and moving objects.[7] Here, "object" simply means a distance with endpoints that are always mutually at rest, i.e., that are at rest in the same inertial frame of reference. If the relative velocity between an observer (or his measuring instruments) and the observed object is zero, then the proper length of the object can simply be determined by directly superposing a measuring rod. However, if the relative velocity is greater than zero, then one can proceed as follows:

Length contraction: Three blue rods are at rest in S, and three red rods in S'. At the instant when the left ends of A and D attain the same position on the axis of x, the lengths of the rods shall be compared. In S the simultaneous positions of the left side of A and the right side of C are more distant than those of D and F, while in S' the simultaneous positions of the left side of D and the right side of F are more distant than those of A and C.

The observer installs a row of clocks that either are synchronized a) by exchanging light signals according to the Poincaré–Einstein synchronization, or b) by "slow clock transport", that is, one clock is transported along the row of clocks in the limit of vanishing transport velocity. Now, when the synchronization process is finished, the object is moved along the clock row and every clock stores the exact time when the left or the right end of the object passes by. After that, the observer only has to look at the position of a clock A that stored the time when the left end of the object was passing by, and a clock B at which the right end of the object was passing by at the same time. It's clear that distance AB is equal to length of the moving object.[7] Using this method, the definition of simultaneity is crucial for measuring the length of moving objects.

Another method is to use a clock indicating its proper time , which is traveling from one endpoint of the rod to the other in time as measured by clocks in the rod's rest frame. The length of the rod can be computed by multiplying its travel time by its velocity, thus in the rod's rest frame or in the clock's rest frame.[8]

In Newtonian mechanics, simultaneity and time duration are absolute and therefore both methods lead to the equality of and . Yet in relativity theory the constancy of light velocity in all inertial frames in connection with relativity of simultaneity and time dilation destroys this equality. In the first method an observer in one frame claims to have measured the object's endpoints simultaneously, but the observers in all other inertial frames will argue that the object's endpoints were not measured simultaneously. In the second method, times and are not equal due to time dilation, resulting in different lengths too.

The deviation between the measurements in all inertial frames is given by the formulas for Lorentz transformation and time dilation (see Derivation). It turns out that the proper length remains unchanged and always denotes the greatest length of an object, and the length of the same object measured in another inertial reference frame is shorter than the proper length. This contraction only occurs along the line of motion, and can be represented by the relation

where

  • is the length observed by an observer in motion relative to the object
  • is the proper length (the length of the object in its rest frame)
  • is the Lorentz factor, defined as where
    • is the relative velocity between the observer and the moving object
    • is the speed of light

Replacing the Lorentz factor in the original formula leads to the relation

In this equation both and are measured parallel to the object's line of movement. For the observer in relative movement, the length of the object is measured by subtracting the simultaneously measured distances of both ends of the object. For more general conversions, see the Lorentz transformations. An observer at rest observing an object travelling very close to the speed of light would observe the length of the object in the direction of motion as very near zero.

Then, at a speed of 13400000 m/s (30 million mph, 0.0447c) contracted length is 99.9% of the length at rest; at a speed of 42300000 m/s (95 million mph, 0.141c), the length is still 99%. As the magnitude of the velocity approaches the speed of light, the effect becomes prominent.

Symmetry

[edit]

The principle of relativity (according to which the laws of nature are invariant across inertial reference frames) requires that length contraction is symmetrical: If a rod is at rest in an inertial frame , it has its proper length in and its length is contracted in . However, if a rod rests in , it has its proper length in and its length is contracted in . This can be vividly illustrated using symmetric Minkowski diagrams, because the Lorentz transformation geometrically corresponds to a rotation in four-dimensional spacetime.[9][10]

Magnetic forces

[edit]

Magnetic forces are caused by relativistic contraction when electrons are moving relative to atomic nuclei. The magnetic force on a moving charge next to a current-carrying wire is a result of relativistic motion between electrons and protons.[11][12]

In 1820, André-Marie Ampère showed that parallel wires having currents in the same direction attract one another. In the electrons' frame of reference, the moving wire contracts slightly, causing the protons of the opposite wire to be locally denser. As the electrons in the opposite wire are moving as well, they do not contract (as much). This results in an apparent local imbalance between electrons and protons; the moving electrons in one wire are attracted to the extra protons in the other. The reverse can also be considered. To the static proton's frame of reference, the electrons are moving and contracted, resulting in the same imbalance. The electron drift velocity is relatively very slow, on the order of a meter an hour but the force between an electron and proton is so enormous that even at this very slow speed the relativistic contraction causes significant effects.

This effect also applies to magnetic particles without current, with current being replaced with electron spin.[citation needed]

Experimental verifications

[edit]

Any observer co-moving with the observed object cannot measure the object's contraction, because he can judge himself and the object as at rest in the same inertial frame in accordance with the principle of relativity (as it was demonstrated by the Trouton–Rankine experiment). So length contraction cannot be measured in the object's rest frame, but only in a frame in which the observed object is in motion. In addition, even in such a non-co-moving frame, direct experimental confirmations of length contraction are hard to achieve, because (a) at the current state of technology, objects of considerable extension cannot be accelerated to relativistic speeds, and (b) the only objects traveling with the speed required are atomic particles, whose spatial extensions are too small to allow a direct measurement of contraction.

However, there are indirect confirmations of this effect in a non-co-moving frame:

  • It was the negative result of a famous experiment, that required the introduction of length contraction: the Michelson–Morley experiment (and later also the Kennedy–Thorndike experiment). In special relativity its explanation is as follows: In its rest frame the interferometer can be regarded as at rest in accordance with the relativity principle, so the propagation time of light is the same in all directions. Although in a frame in which the interferometer is in motion, the transverse beam must traverse a longer, diagonal path with respect to the non-moving frame thus making its travel time longer, the factor by which the longitudinal beam would be delayed by taking times L/(cv) and L/(c+v) for the forward and reverse trips respectively is even longer. Therefore, in the longitudinal direction the interferometer is supposed to be contracted, in order to restore the equality of both travel times in accordance with the negative experimental result(s). Thus the two-way speed of light remains constant and the round trip propagation time along perpendicular arms of the interferometer is independent of its motion & orientation.
  • Given the thickness of the atmosphere as measured in Earth's reference frame, muons' extremely short lifespan shouldn't allow them to make the trip to the surface, even at the speed of light, but they do nonetheless. From the Earth reference frame, however, this is made possible only by the muon's time being slowed down by time dilation. However, in the muon's frame, the effect is explained by the atmosphere being contracted, shortening the trip.[13]
  • Heavy ions that are spherical when at rest should assume the form of "pancakes" or flat disks when traveling nearly at the speed of light— and in fact, the results obtained from particle collisions can only be explained when the increased nucleon density due to length contraction is considered.[14][15][16]
  • The ionization ability of electrically charged particles with large relative velocities is higher than expected. In pre-relativistic physics the ability should decrease at high velocities, because the time in which ionizing particles in motion can interact with the electrons of other atoms or molecules is diminished; however, in relativity, the higher-than-expected ionization ability can be explained by length contraction of the Coulomb field in frames in which the ionizing particles are moving, which increases their electrical field strength normal to the line of motion.[13][17]
  • In synchrotrons and free-electron lasers, relativistic electrons were injected into an undulator, so that synchrotron radiation is generated. In the proper frame of the electrons, the undulator is contracted which leads to an increased radiation frequency. Additionally, to find out the frequency as measured in the laboratory frame, one has to apply the relativistic Doppler effect. So, only with the aid of length contraction and the relativistic Doppler effect, the extremely small wavelength of undulator radiation can be explained.[18][19]

Reality of length contraction

[edit]
Minkowski diagram of Einstein's 1911 thought experiment on length contraction. Two rods of rest length are moving with in opposite directions, resulting in .

In 1911 Vladimir Varićak asserted that one sees the length contraction in an objective way, according to Lorentz, while it is "only an apparent, subjective phenomenon, caused by the manner of our clock-regulation and length-measurement", according to Einstein.[20][21] Einstein published a rebuttal:

The author unjustifiably stated a difference of Lorentz's view and that of mine concerning the physical facts. The question as to whether length contraction really exists or not is misleading. It doesn't "really" exist, in so far as it doesn't exist for a comoving observer; though it "really" exists, i.e. in such a way that it could be demonstrated in principle by physical means by a non-comoving observer.[22]

— Albert Einstein, 1911

Einstein also argued in that paper, that length contraction is not simply the product of arbitrary definitions concerning the way clock regulations and length measurements are performed. He presented the following thought experiment: Let A'B' and A"B" be the endpoints of two rods of the same proper length L0, as measured on x' and x" respectively. Let them move in opposite directions along the x* axis, considered at rest, at the same speed with respect to it. Endpoints A'A" then meet at point A*, and B'B" meet at point B*. Einstein pointed out that length A*B* is shorter than A'B' or A"B", which can also be demonstrated by bringing one of the rods to rest with respect to that axis.[22]

Paradoxes

[edit]

Due to superficial application of the contraction formula, some paradoxes can occur. Examples are the ladder paradox and Bell's spaceship paradox. However, those paradoxes can be solved by a correct application of the relativity of simultaneity. Another famous paradox is the Ehrenfest paradox, which proves that the concept of rigid bodies is not compatible with relativity, reducing the applicability of Born rigidity, and showing that for a co-rotating observer the geometry is in fact non-Euclidean.

Visual effects

[edit]
Formula on a wall in Leiden, Netherlands. Lorentz was chair of theoretical physics at the University of Leiden (1877–1910).

Suggestions by Fitzgerald, Lorentz and Einstein that moving objects should contract in their direction of motion led to a widely-held expectation that if this effect was physically "real", it should be photographable (at least, in theory) as a simple contraction. [23] This appears to have been the "taught" result until the papers of James Terrell [24] and Roger Penrose [25] in 1959. Although intuitive and widely-taught, the pre-1959 narrative appears to have been inherited from descriptions of Lorentz ether theory, and does not normally coincide with the special theory's actual optical predictions. [26] [27]

Photographable effects

[edit]

Simple recession and approach velocities

[edit]

Visual appearance is subject to differential signal time-lag effects: if a moving body approaches, its more distant and more-timelagged rear will appear to be at an earlier location, further away, and the body will be seen and photographed as being elongated. If the body recedes, its furthest, most timelagged parts will be seen to be closer than their actual positions, and the body will be seen and photographed to be shortened. This is true regardless of any SR contributions. As a general rule the photographable length-change associated with a propagation model has the same characteristic as its Doppler predictions, and special relativity follows this pattern. The SR photographable length of a receding or approaching body SR, length'/length is the same as SR's visible Doppler shift in the frequency of its light, frequency'/frequency , giving the result that, under SR, the receding or approaching body appears contracted or elongated by the amount

, where v is recession velocity.

Hence, according to SR, a 1-kilometre-long railway train travelling along its track at v=0.6c should be photographed by a trackside photographer as occupying exactly 0.5 km of track if it is receding, and 2 km of track if it is approaching.

"Transverse" effects

[edit]

"Transverse" predictions under SR are sensitive to our exact definition of the moment that a passing extended object can be said to be "transverse"-moving. If our trackside photographer is equipped with a 180-degree fisheye lens, and the train consists of an even number 2n of identical-length units, then if they choose to take their photograph at the moment that n units are receding and another n units are approaching (when the train is deduced to be centred), the image will show the train occupying a Lorentz-elongated length of track. However, if they wait until the train's pre-marked mid-point has passed them, and until equal lengths of track are seen to be occupied on both sides (when the train appears to be centred), this later photograph will show the train occupying a Lorentz-contracted total length of track.

[edit]
  • In the popular and influential illustrated Mr Tompkins books [28] by physicist George Gamow, [29] an approaching bicycle is described and shown as being seen to be length-contracted, a wrong result. This mistake is noted in modern editions, in a new foreword by Penrose.
  • In the prestigious 1973 BBC- Time-Life Films television series The Ascent of Man, written and presented by mathematician Jacob Bronowski, the animation of how buildings appear from a moving tram follows Gamow in showing the approaching and receding sets of buildings as (wrongly) both being seen to be contracted. This error is corrected in the subsequent remastered 2005 DVD release, but can still be seen in the text and illustrations in early editions of the book released to accompany the series.

Evolution of the concept

[edit]
  • In 1908, Minkowski argued that Lorentz and Einstein's understanding of length-contraction and time-dilation were naive: what actually happened was that with a change in relative velocity, our reference plane of simultaneity was rotated with respect to the x and t axes. [6]
  • Prior to 1959, Einstein's assertions that moving objects were shortened for a stationary observer encouraged the belief that this contraction should be simple and visible (e.g. Gamow).
  • In 1959, the Terrell and Penrose papers corrected the misconception, and offered slightly different conceptual interpretations of why a moving sphere was seen to retain its sphericity ("not contracted but rotated", Penrose-Terrell rotation [30] ). [31]
  • Through the 1960s, this was followed by a slew of further papers from other authors (e.g. Boas [32]) exploring other aspects of the timelag effect.
  • Even after the 1960s, some sources continued to teach the faulty "Gamow version" of special relativity (e.g. Bronowski)
  • In 1994, the (final?) iteration of the description was produced by William Moreau, who pointed out that an expanding spherical wavefront is calculated by an otherly-moving observer, to be marking out an elongated ellipsoid in space. [33] A co-moving sphere, congruent to the spherical wavefront, might therefore naively be expected to appear elongated, too. The "function" of the Lorentz contraction under special relativity was therefore NOT to turn a sphere into a contracted spheroid, or a sphere into a rotated sphere, but to convert an elongated spheroid back into a sphere with same dimensions as the stationary sphere.

The "Moreau" explanation of SR's behaviour is supported by the geometry of Minkowski spacetime. While a cross-section of a "stationary" expanding spherical wavefront gives a simple circular cross-section of a Minkowski future lightcone, the different definitions of space and time axes that apply for a differently-moving observer create a wavefront that intersects the same lightcone at a different angle. The resulting conic section is necessarily elongated in the direction of tilt by the Lorentz factor: a Lorentz contraction then returns the original circular outline. There is no corresponding way for a plane to cut a cone that results in a contracted ellipse in the direction of tilt.

Ambiguity

[edit]

Although SR's total physical prediction for motion-related length-change can be unambiguously tested against the predictions of other theories, the notional breakdown of the prediction into separate propagation-based and Lorentz components cannot normally be verified, and has to remain interpretative, as a matter of principle.

Taking the non-transverse equation above, we can choose to believe that the speed of light is fixed globally in our own frame, and interpret the [ (c-v) / (c+v) ] result as consisting of a propagation length-change of c/(c+v) multiplied by a Lorentz contraction ... or to believe that the speed of light is universal in the frame of our moving object, giving a different propagation effect of (c-v)/c , multiplied by a Lorentz elongation due to the contraction of our own (moving) reference-rulers ... or we can even choose to believe that the s.o.l. is fixed with respect to an exactly intermediate frame, assume that we and the object both have the same speeds with respect to this frame (so that there is no relative Lorentz effect), and calculate the same outcome using just two propagation shifts and a modified velocity value obtained from the SR velocity-addition formula. All three approaches generate identical outcomes.

In the absence of accelerations, even if the contents of a photograph are entirely in agreement with SR, we cannot identify on principle whether the contents of the photograph "really" show a Lorentz contraction, a Lorentz elongation, or no Lorentz effect at all. To do so would be to unambiguously know the strength of the remaining propagation-based components, which would in turn mean that we unambiguously knew the frame in which light was "really" propagating, breaking the "no preferred frame" rule.

The requirement that we cannot unambiguously identify a preferred frame for the propagation of light translates into a requirement that we cannot unambiguously isolate Lorentz effects in experimental data, in purely inertial physics (say, particles "coasting" at high fixed speed down a straight-line section of a particle accelerator). This means that we must be cautious in how we treat claimed experimental verifications of Lorentz contraction effects - in some scenarios, a successful non-interpretative experimental isolation of the Lorentz effect would amount to an experimental disproof of special relativity.

Derivation

[edit]

Length contraction can be derived in several ways:

Known moving length

[edit]

In an inertial reference frame S, let and denote the endpoints of an object in motion. In this frame the object's length is measured, according to the above conventions, by determining the simultaneous positions of its endpoints at . Meanwhile, the proper length of this object, as measured in its rest frame S', can be calculated by using the Lorentz transformation. Transforming the time coordinates from S into S' results in different times, but this is not problematic, since the object is at rest in S' where it does not matter when the endpoints are measured. Therefore, the transformation of the spatial coordinates suffices, which gives:[7]

Since , and by setting and , the proper length in S' is given by

Therefore, the object's length, measured in the frame S, is contracted by a factor :

Likewise, according to the principle of relativity, an object that is at rest in S will also be contracted in S'. By exchanging the above signs and primes symmetrically, it follows that

Thus an object at rest in S, when measured in S', will have the contracted length

Known proper length

[edit]

Conversely, if the object rests in S and its proper length is known, the simultaneity of the measurements at the object's endpoints has to be considered in another frame S', as the object constantly changes its position there. Therefore, both spatial and temporal coordinates must be transformed:[34]

Computing length interval as well as assuming simultaneous time measurement , and by plugging in proper length , it follows:

Equation (2) gives

which, when plugged into (1), demonstrates that becomes the contracted length :

.

Likewise, the same method gives a symmetric result for an object at rest in S':

.

Using time dilation

[edit]

Length contraction can also be derived from time dilation,[35] according to which the rate of a single "moving" clock (indicating its proper time ) is lower with respect to two synchronized "resting" clocks (indicating ). Time dilation was experimentally confirmed multiple times, and is represented by the relation:

Suppose a rod of proper length at rest in and a clock at rest in are moving along each other with speed . Since, according to the principle of relativity, the magnitude of relative velocity is the same in either reference frame, the respective travel times of the clock between the rod's endpoints are given by in and in , thus and . By inserting the time dilation formula, the ratio between those lengths is:

.

Therefore, the length measured in is given by

So since the clock's travel time across the rod is longer in than in (time dilation in ), the rod's length is also longer in than in (length contraction in ). Likewise, if the clock were at rest in and the rod in , the above procedure would give

Geometrical considerations

[edit]
Cuboids in Euclidean and Minkowski spacetime

Additional geometrical considerations show that length contraction can be regarded as a trigonometric phenomenon, with analogy to parallel slices through a cuboid before and after a rotation in E3 (see left half figure at the right). This is the Euclidean analog of boosting a cuboid in E1,2. In the latter case, however, we can interpret the boosted cuboid as the world slab of a moving plate.

Image: Left: a rotated cuboid in three-dimensional euclidean space E3. The cross section is longer in the direction of the rotation than it was before the rotation. Right: the world slab of a moving thin plate in Minkowski spacetime (with one spatial dimension suppressed) E1,2, which is a boosted cuboid. The cross section is thinner in the direction of the boost than it was before the boost. In both cases, the transverse directions are unaffected and the three planes meeting at each corner of the cuboids are mutually orthogonal (in the sense of E1,2 at right, and in the sense of E3 at left).

In special relativity, Poincaré transformations are a class of affine transformations which can be characterized as the transformations between alternative Cartesian coordinate charts on Minkowski spacetime corresponding to alternative states of inertial motion (and different choices of an origin). Lorentz transformations are Poincaré transformations which are linear transformations (preserve the origin). Lorentz transformations play the same role in Minkowski geometry (the Lorentz group forms the isotropy group of the self-isometries of the spacetime) which are played by rotations in euclidean geometry. Indeed, special relativity largely comes down to studying a kind of noneuclidean trigonometry in Minkowski spacetime, as suggested by the following table:

Three plane trigonometries
Trigonometry Circular Parabolic Hyperbolic
Kleinian Geometry Euclidean plane Galilean plane Minkowski plane
Symbol E2 E0,1 E1,1
Quadratic form Positive definite Degenerate Non-degenerate but indefinite
Isometry group E(2) E(0,1) E(1,1)
Isotropy group SO(2) SO(0,1) SO(1,1)
Type of isotropy Rotations Shears Boosts
Algebra over R Complex numbers Dual numbers Split-complex numbers
ε2 −1 0 1
Spacetime interpretation None Newtonian spacetime Minkowski spacetime
Slope tan φ = m tanp φ = u tanh φ = v
"cosine" cos φ = (1 + m2)−1/2 cosp φ = 1 cosh φ = (1 − v2)−1/2
"sine" sin φ = m (1 + m2)−1/2 sinp φ = u sinh φ = v (1 − v2)−1/2
"secant" sec φ = (1 + m2)1/2 secp φ = 1 sech φ = (1 − v2)1/2
"cosecant" csc φ = m−1 (1 + m2)1/2 cscp φ = u−1 csch φ = v−1 (1 − v2)1/2

References

[edit]
  1. ^ Dalarsson, Mirjana; Dalarsson, Nils (2015). Tensors, Relativity, and Cosmology (2nd ed.). Academic Press. pp. 106–108. ISBN 978-0-12-803401-9. Extract of page 106
  2. ^ FitzGerald, George Francis (1889), "The Ether and the Earth's Atmosphere" , Science, 13 (328): 390, Bibcode:1889Sci....13..390F, doi:10.1126/science.ns-13.328.390, PMID 17819387, S2CID 43610293
  3. ^ Lorentz, Hendrik Antoon (1892), "The Relative Motion of the Earth and the Aether" , Zittingsverlag Akad. V. Wet., 1: 74–79
  4. ^ a b Pais, Abraham (1982), Subtle is the Lord: The Science and the Life of Albert Einstein, New York: Oxford University Press, ISBN 0-19-520438-7
  5. ^ Einstein, Albert (1905a), "Zur Elektrodynamik bewegter Körper" (PDF), Annalen der Physik, 322 (10): 891–921, Bibcode:1905AnP...322..891E, doi:10.1002/andp.19053221004. See also: English translation.
  6. ^ a b "Space and Time - Wikisource, the free online library". en.wikisource.org. Retrieved 2025-01-19.
  7. ^ a b c Born, Max (1964), Einstein's Theory of Relativity, Dover Publications, ISBN 0-486-60769-0
  8. ^ Edwin F. Taylor; John Archibald Wheeler (1992). Spacetime Physics: Introduction to Special Relativity. New York: W. H. Freeman. ISBN 0-7167-2327-1.
  9. ^ Albert Shadowitz (1988). Special relativity (Reprint of 1968 ed.). Courier Dover Publications. pp. 20–22. ISBN 0-486-65743-4.
  10. ^ Leo Sartori (1996). Understanding Relativity: a simplified approach to Einstein's theories. University of California Press. pp. 151ff. ISBN 0-520-20029-2.
  11. ^ "The Feynman Lectures on Physics Vol. II Ch. 13: Magnetostatics". www.feynmanlectures.caltech.edu.
  12. ^ E M Lifshitz, L D Landau (1980). The classical theory of ields. Course of Theoretical Physics. Vol. 2 (Fourth ed.). Oxford UK: Butterworth-Heinemann. ISBN 0-7506-2768-9.
  13. ^ a b Sexl, Roman; Schmidt, Herbert K. (1979), Raum-Zeit-Relativität, Braunschweig: Vieweg, Bibcode:1979raum.book.....S, ISBN 3-528-17236-3
  14. ^ Brookhaven National Laboratory. "The Physics of RHIC". Retrieved 2013-01-01.
  15. ^ Manuel Calderon de la Barca Sanchez. "Relativistic heavy ion collisions". Retrieved 2013-01-01.
  16. ^ Hands, Simon (2001). "The phase diagram of QCD". Contemporary Physics. 42 (4): 209–225. arXiv:physics/0105022. Bibcode:2001ConPh..42..209H. doi:10.1080/00107510110063843. S2CID 16835076.
  17. ^ Williams, E. J. (1931), "The Loss of Energy by β -Particles and Its Distribution between Different Kinds of Collisions", Proceedings of the Royal Society of London. Series A, 130 (813): 328–346, Bibcode:1931RSPSA.130..328W, doi:10.1098/rspa.1931.0008
  18. ^ DESY photon science. "What is SR, how is it generated and what are its properties?". Archived from the original on 2016-06-03. Retrieved 2013-01-01.
  19. ^ DESY photon science. "FLASH The Free-Electron Laser in Hamburg (PDF 7,8 MB)" (PDF). Retrieved 2013-01-01.
  20. ^ Varićak, Vladimir. On Ehrenfest's Paradox – via Wikisource.
  21. ^ Miller, A.I. (1981), "Varičak and Einstein", Albert Einstein's special theory of relativity. Emergence (1905) and early interpretation (1905–1911), Reading: Addison–Wesley, pp. 249–253, ISBN 0-201-04679-2
  22. ^ a b Einstein, Albert (1911). "Zum Ehrenfestschen Paradoxon. Eine Bemerkung zu V. Variĉaks Aufsatz". Physikalische Zeitschrift. 12: 509–510.; Original: Der Verfasser hat mit Unrecht einen Unterschied der Lorentzschen Auffassung von der meinigen mit Bezug auf die physikalischen Tatsachen statuiert. Die Frage, ob die Lorentz-Verkürzung wirklich besteht oder nicht, ist irreführend. Sie besteht nämlich nicht "wirklich", insofern sie für einen mitbewegten Beobachter nicht existiert; sie besteht aber "wirklich", d. h. in solcher Weise, daß sie prinzipiell durch physikalische Mittel nachgewiesen werden könnte, für einen nicht mitbewegten Beobachter.
  23. ^ Sheldon, Eric (1988-03-01). "The twists and turns of the Terrell effect". American Journal of Physics. 56 (3): 199–200. doi:10.1119/1.15687. ISSN 0002-9505.
  24. ^ Terrell, James (1959). "Invisibility of the Lorentz Contraction". Physical Review. 116 (4): 1041–1045. doi:10.1103/PhysRev.116.1041.
  25. ^ Penrose, R. (January 1959). "The apparent shape of a relativistically moving sphere". Mathematical Proceedings of the Cambridge Philosophical Society. 55 (1): 137–139. doi:10.1017/S0305004100033776. ISSN 1469-8064.
  26. ^ Weisskopf, Victor F. (1960). "The visual appearance of rapidly moving objects". Physics Today. 13 (9): 24–27. Bibcode:1960PhT....13i..24W. doi:10.1063/1.3057105. S2CID 36707809.
  27. ^ Kraus, U. (2000). "Brightness and color of rapidly moving objects: The visual appearance of a large sphere revisited" (PDF). American Journal of Physics. 68 (1): 56–60. Bibcode:2000AmJPh..68...56K. doi:10.1119/1.19373.
  28. ^ McCrea, W. H. (February 1940). "Mr. Tompkins in Wonderland. By G. Gamow. Pp. x, 91. 7s. 6d. 1939. (Cambridge)". The Mathematical Gazette. 24 (258): 62–63. doi:10.2307/3607110. ISSN 0025-5572.
  29. ^ Gamow, George (1993). Mr. Tompkins in paperback. Introduction by Roger Penrose (Canto ed.). Cambridge ; New York: Cambridge University Press. ISBN 978-0-521-44771-3.
  30. ^ "Can You See the Lorentz–Fitzgerald Contraction?". math.ucr.edu.
  31. ^ Penrose, Roger (2005). The Road to Reality. London: Vintage Books. pp. 430–431. ISBN 978-0-09-944068-0.
  32. ^ Boas, Mary L. (1961-05-01). "Apparent Shape of Large Objects at Relativistic Speeds". American Journal of Physics. 29 (5): 283–286. doi:10.1119/1.1937751. ISSN 0002-9505.
  33. ^ Moreau, William (1994-05-01). "Wave front relativity". American Journal of Physics. 62 (5): 426–429. doi:10.1119/1.17543. ISSN 0002-9505.
  34. ^ Walter Greiner (2006). Classical Mechanics: Point Particles and Relativity. Springer. ISBN 9780387218519.; Equations 31.4 – 31.6
  35. ^ David Halliday, Robert Resnick, Jearl Walker (2010), Fundamentals of Physics, Chapters 33-37, John Wiley & Son, pp. 1032f, ISBN 978-0470547946{{citation}}: CS1 maint: multiple names: authors list (link)
[edit]